

Urology BASICOS EN CATETERES URETERALES

Pablo Abad-López / @DoctorAbad

¿QUÉ ES UN CATÉTER URETERAL?

Es un dispositivo endourológico que distribuye la orina desde el tracto urinario superior a la vejiga en caso de obstrucción del tracto urinario superior ó para prevenirla.

FUNDAMENTOS FÍSICOS DE LA ORINA EN EL TRACTO URINARIO SUPERIOR

Orina a través del uréter: fluido laminar, incompresible y Newtoniano

Ecuación de Continuidad: La Masa que entra en el uréter (Ma) es igual a la masa que sale del uréter (Mb) hacia la vejiga.

> Ma = Mb $Va \times Aa = Vb \times Ab$

Principio de Bernoulli: La Energía (E) del fluido es igual en 2 secciones del uréter, lo que implica que la relación entre Velocidad (V) y Presión (P) permanece constante.

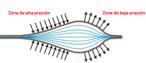
> Ea = Eb Va x Pa = Vb x Pb

Modificado de J.C. Gómez-blanco, J. Martínez-reina, D. Cruz, et Al. Aplicación de la Mecánica de Fluidos y la Simulación: Tracto Urinario y Catéteres Ureterales. Arch. Esp. Urol. 2016; 69 (8): 451-461

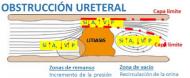
HISTORIA DE LOS CATÉTERES URETERALES

G. Simon (1900): primer catéter ureteral con abertura vesical

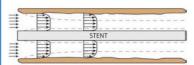
Herdman (1949): primer catéter ureteral de polietileno, hacia el exterior uretral


R.P. Gibbons: primer catéter ureteral con bulbo vesical para prevenir desplazamiento proximal

T.W. Hepperlen (70s): primer catéter ureteral mono-J


R.P. Finney (70S): primer catéter ureteral doble-J

velocidad URÉTER NORMAL



El peristaltismo que realiza el uréter hace que la zona de bajas presiones más cercana al riñón desaparezca ntando su presión hasta el valor máximo.

URÉTER DERIVADO

un alto grado de fricción, modificando la tasa de flujo, en el cual la orina circula entre las paredes ureterales y el catéter, así como

PROPIEDADES Y MATERIALES DE LOS CATÉTERES URETERALES

PROPIEDADES

DUREZA: máxima fuerza requerida para que el extremo proximal del catéter atraviese un tejido

RIGIDEZ: capacidad de no deformarse al someterse a tracción / compresión

COMPRESIÓN RADIAL: reducción del lumen central

RESISTENCIA A LA ENCRUSTACIÓN: capacidad de no calcificarse

MATERIALES

POLIETILENO: rígido y con tendencia a la rotura

POLIETILENO + POLIURETANO: más resistente, menos incrustante. Mejor adaptabilidad (efecto

SILICONA: mayor flexibilidad, menos rigidez durante la inserción = mejor tolerancia pero mayor dificultad para la colocación en uréteres estrechos. Menos incrustación.

REFORZADOS CON ALAMBRE (METÁLICOS): Mayor resistencia a la compresión radial (Menor reducción del lumen central). Nitinol (Niquel + Titanio).

TIPOS DE CATÉTERES URETERALES

DOBLE J

Finney et al (1978).

Mejora en el anclaje y prevención del desplazamiento.

La mayoría de catéteres actuales adoptan esta forma.

ESTRIADO

Finney et al (1981).

Mejoría en el aclaramiento de restos litiásicos tras

LithoStent (Olympus, USA), Towers

ESPIRAL

Guía metálica en el interior. Meioría del drenaie en obstrucciones extrínsecas. Mejor adaptación a la forma ureteral. Meior tolerado.

Percuflex Helical (Boston Scientific, USA)

DE DUREZA DUAL

Transición progresiva desde extremo duro (renal) al blando (vesical), lo que mejora la tolerancia. Percuflex® (Boston® Scientific, USA) Inlay® (Bard® medical, USA)

TAIL STENTS

Bucle de polímero en el extremo distal. Reduce el disconfort vesical. No diferencia respecto a síntomas renales

Polaris™ (Boston® scientific, USA)

DE PUNTA MAGNÉTICA No requieren cistoscopia para su

Blackstar (Urotech, Germany)

DE DIÁMETRO DUAL Para endopielotomía longitudinal

diámetro que el resto del catéter. cónicas para facilitar la inserción. Indovasive@

FILIFORME

Evitan la fricción en el trígono: el bucle distal es reemplazado por una sutura de 0.3Ch de polipropileno Diámetro: 7 y 4.8Ch (mini). Mini no se aconseja para litiasis obstructivas.

J-Fil. MiniJ-Fil (Rocamed), HydroPlus

METÁLICOS

Se ablandan y moldean a temperaturas entre los 7-13ºC. Mantienen su forma con el aumento de temperatura hasta los 55ºC. En obstrucción ureteral extrínseca, Resonance (Cook@ Medical. USA). Silhouette stent (Applied Medical).

DE LUMEN DUAL

Mayor flujo intra-catéter. En obstrucciones extrínsecas y fallo de stent simple, sin incrementar disconfort.

MALLADOS AUTO-EXPANDIBLES

Tolerancia mejorada (menos irritación del tracto urinario). Mayor flujo urinario intra-stent. Riesgo de obstrucción disminuido. Refluio retrógrado y dolor en flanco disminuidos.

Uventa (TaeWoong, South Korea) Allium URS (Allium LTD, Israel) Memokath 051 (PNN Medical, Denmark)

REVESTIMIENTO Para reducir incrustación (antibiótico, heparina, glicosaminoglicanos ...)

FUTURO DE LOS CATÉTERES URETERALES

Para reducir la morbilidad relacionada con la retirada.

LIBERADORES DE FÁRMACOS

En tumores de tracto urinario superior (BCG, mitomicina)